以德国天文学家阿尔伯特&iddot;马斯命名的撞击坑,直径98公里。
法国物理学家,发现天然放射性现象,与居里夫妇共享1903年诺贝尔奖。该撞击坑直径为171公里。
一个火星日比地球日长大约四十分钟。
第二十三章
日志:l476
我相信自己能搞定。
我现在身处沙暴的最边缘,既不清楚它的形状,也不清楚其移动方向。但它肯定在移动,这正是我能利用的一点。我不用特意找寻和探索它,它正向我而来。
沙暴就是飘浮在空气中的尘土,它并不会对漫游车造成实质性损伤。我可以将它换算作&ldo;电力损耗百分比&rdo;。我看了一下昨天的电力输出,最多97,所以就是3沙暴。
我需要前进,也需要产氧,这两个是主要目标。我要用全部电力的20来回收氧气(停车产气)。如果我进入了81沙暴,那就真有大麻烦了。即便将全部电力都用来产气,我也会缺氧。这将是致命的状况。不过,这还不算最糟的。我需要电力来行驶,否则就会彻底搁浅,只能干等沙暴移走,或是减弱,那可能要等上好几个月。
产电越多,我就能走得越远。天空明净时,我将80的电力用于驾驶,每天能开90公里。所以现在,在3的损耗下,每天要少走27公里。
每个火星日少走几公里不是大问题。我有的是时间,但不能在沙暴里越开越深,直到最后开不出去。
最慢最慢,我也要比沙暴跑得快。如果能开得足够快,甚至可以沿着沙暴边缘进行机动,而不用完全被它覆盖。所以,我要搞清楚它的移动速度有多快。
我可以在这里待上一整个火星日来测算,通过比较昨天的瓦特数和今天的。我要做的就是确定比较的是两天中的同一时刻,然后就有办法知道沙暴移动的速度,至少可以通过电力损失比率来反映。
但我还需要知道沙暴的形状。
沙暴范围很大,有可能延绵数千公里。所以,当我沿着它的边缘驾驶时,得知道该往哪个方向开。我要沿着沙暴移动方向的垂直方向开,并且往沙暴最薄的区域开。
以下是我的计划:
当前,我可以开86公里(因为昨天的电没充满)。明天,我要在这里留下一块太阳能电池板,向南开40公里,再放下一块太阳能电池板,然后再向南开40公里,这样我就能得到80公里范围内的三个取样点。
到了后天,我就往回开,收集这些电池板,获取数据。通过比较这三个地点在一天里同一时间的瓦特数,就能推算出沙暴的形状。如果沙暴在南边更厚,我就向北绕过它;如果北面厚,我就向南开。
我希望向南走。斯基亚帕雷利在我的东南方,向北将会把路绕得更远。
这个计划只有一个很小的瑕疵:我没有任何办法记录丢下来的电池板上的瓦特数。通过漫游车电脑,我能方便地跟踪和记录瓦特数,但对于那些丢在路上的,就得另想他法了。我不能在回来的路上抄读数,我需要的是同一时间不同地点的数据。